クイックメニュー
スレタイ検索

三角比と三角関数は別物なのか in 物理板

1ご冗談でしょう?名無しさん [sage]
AAS
三角比は測量に使い、三角関数は波を表すのに使うから間違いらしい


Shore
@kissan39
しっかり勉強されていたなら、測量に使う三角比を、電波・音波等波を表す三角関数と間違うことなどあり得ません。見苦しい言い訳、最低ですね。
維新の議員ってこんなのばかりですね。
引用ツイート
藤巻健太 衆議院議員
@Kenta_Fujimaki
· 5月22日
たしかに私は三角比と三角関数を混同していたのかもしれない
けれど私は高校時代、三角比も三角関数もしっかりと勉強していた。
数学は得意だったし、好きだった。
受験前は一日中、数学を勉強していた。
しかし何も覚えていないし、全て忘れた。
なぜならばこの15年ほど、一度も使っていないからだ。 twitter.com/kenta_fujimaki…
https://twitter.com/kissan39/status/1528360355323228160
(deleted an unsolicited ad)

2022/05/24(火)01:58:44.86(???.net)


278ご冗談でしょう?名無しさん [sage]

AAS

NG

11 15×36
5:12:13=15:36:39
(0, 0), 36, 0), (36, 15), (0, 15)
y=(5/12)x+(13/12)
(1, 14)、(1, 3/2)
よって5→25/2
S=30×(5/2)²×2=375
375/13×34=375/442
中心が取り得る値のうち対角線に触れない範囲。

13 tan3θ-tan2θ-tanθ
=tan3θtan2θtanθ (θ≠kπ/2)
tan3θ=(tan2θ+tanθ)/(1-tan2θtanθ)
tanθ₃=-tan(θ₁+θ₂)
tanθ₃(1-tanθ₁tanθ₂)
=-(tanθ₁+tanθ₂)

14 [0, π]
sina-8sind=4sinc-7sinb
cosa-8cosd=4cosc-7cosb
65-16(cosacosd+cosacosd)
=65-56(cosbcosc+sinbsinc)
2cos(a-d)=7cos(b-c)

15 sin(x-y)+sin(y-z)+sin(z-x)
=-4sin(x-y/2)sin(y-z/2)sin(z-x/2)

a+b+c=0の時
sina+sinb+sinc
=2sin((a+b)/2)cos((a-b)/2)
[全て表示]

2022/11/29(火)21:02:41.38(???.net)


279ご冗談でしょう?名無しさん [sage]

AAS

NG

a+7b=4c+8d、a-8d=4c-7b
2a・d=7b・c
2cosθ=7cosφ、
cosθ : cosφ=7 : 2

2022/11/29(火)21:15:26.05(???.net)


280ご冗談でしょう?名無しさん [sage]

AAS

NG

16 (4cos²9-3)(4cos²27-3)=tan9
cos27(4cos²27-3)=sin9
cos81=sin9

17 (1+a/s)(1+b/c)≧(1+√2ab)²
a≧0, b≧0, 0<c<1, 0<s<1
1+a/s+b/c+ab/sc
≧1+a/s+b/c+2ab (∵1/sc≧2)
≧1+2√(ab/sc)+2ab
≧1+2√(2ab)+2ab (∵1/√sc≧2)
=(1+√(2ab))² (1=s²+c²≧2sc)

18 sinθ₁+sinθ₂+sinθ₃≦1、
θ₁+θ₂+θ₃=π、θ₁≦θ₂≦θ₃の時、
θ₁>0>-θ₁、θ₂+θ₁>θ₂-θ₁、α>β≧0
cosα<cosβ
sinθ₁+sinθ₂+sin(θ₁+θ₂)≦1
2sinαc(osβ+cosα)≦1
sin(2α)(cosα+cosβ)≦cosα
sin2α≦cosα/(cosα+cosβ)<1/2
θ₁+θ₂<30

2022/12/01(木)00:24:38.52(???.net)


281ご冗談でしょう?名無しさん [sage]

AAS

NG

19 tanθ₁/2tanθ₂/2+tanθ₂/2tanθ₃/2+tanθ₃/2tanθ₁/2=1
tanθ₁/2tanθ₂/2+
cot(θ₁+θ₂)/2(tanθ₂/2+tanθ₁/2)=1

tanθ₁/2tanθ₂/2tanθ₃/2≦√3/9
tanθ₁/2tanθ₂/2cot(θ₁+θ₂)/2
tanθ₃/2≦√3/9

tanθ₁/2tanθ₂/2(1-tanθ₁/2tanθ₂/2)/(tanθ₁/2+tanθ₂/2)≦√3/9
AB(1-AB)/(A+B)≦√(AB)(1-AB)/2
x(1-x²)/2=(x-x³)/2≦1/3√3
1-3x²=0とおくとx=1/√3
cotθ>0より1-AB>0、0<AB<1

AB+BC+CA=1の時、ABC≦√3/9
3³√(ABC)²≦1よりABC≦1/√27
=√3/9

2022/12/03(土)18:23:24.51(???.net)


282ご冗談でしょう?名無しさん [sage]

AAS

NG

20 tanθ₁+tanθ₂tanθ₃=tanθ₁tanθ₂tanθ₃
tanθ₃(1-tanθ₁tanθ₂)=-(tanθ₁+tanθ₂)
tanθ₃=-tan(θ₁+θ₂)
ABC≧3√3
ABC=A+B+C
≧3tan(θ₁+θ₂+θ₃)/3=3√3
下に凸。
y'=sec²x>0、y''=sinx/cos³x>0
3点の重心は重心のtanよりも上にある。
(tanθ₁+tanθ₂+tanθ₃)/3
≧tan((θ₁+θ₂+θ₃)/3)
A+B+C≧3³√(ABC)
P³≧27P、P²≧27、P≧3√3

21 cotθ₁cotθ₂+cotθ₂cotθ₃+cotθ₃cotθ₁=1
cotθ₃(cotθ₁+cotθ₂)=1-cotθ₁cotθ₂
cotθ₃=-cot(θ₁+θ₂)
cot(θ₁+θ₂)=cos(θ₁+θ₂)/sin(θ₁+θ₂)
=(cotθ₁cotθ₂-1)/(cotθ₁+cotθ₂)
xy+yz+zx=1の時、
cotθ₁=x、cotθ₂=y、cotθ₃=z
cotθ₁cotθ₂+cotθ₂cotθ₃+cotθ₃cotθ₁=1
cotθ₃(cotθ₁+cotθ₂)=1-cotθ₁cotθ₂
双射=全射+単射
上への写像=全射(Bの全ての元yに対してf(x)=yを満たすAの元xが存在する)。f(A)=B。
単射=一対一の写像、写像fの定義域C⊂始域A、値域D⊂Bにおいて任意のy∈Dに対してf(x)=yを満たすx∈Cが唯1つ存在する。
中への写像=f(A)⊂Bとなる写像。

2022/12/03(土)21:37:20.56(???.net)


283ご冗談でしょう?名無しさん [sage]

AAS

NG

22 sin²θ₁/2+sin²θ₂/2+sin²θ₃/2
+2sinθ₁/2sinθ₂/2sinθ₃/2
=(1-cosθ₁)/2+(1-cosθ₂)/2
+(1+cos(θ₁+θ₂))/2
+2sinθ₁/2sinθ₂/2cos(θ₁+θ₂)/2
(1-cosθ₁)/2+(1-cosθ₂)/2
+(1+cos(θ₁+θ₂))/2
+(1/2)sinθ₁sinθ₂
-(1-cosθ₁)(1-cosθ₂)/2
=1+(1/2)(cos(θ₁+θ₂)+sinθ₁sinθ₂-cosθ₁cosθ₂)=1

z=-xy±√(x²y²-(x²+y²-1))
z=-xy+√(1-x²)(1-y²) P (∵z>0)
z>0⇔-x²-y²+1>0⇔x²+y²<1
sin²θ₁+sin²θ₂=1-(cosA+cosB)/2<1
x=sinθ₁、y=sinθ₂とおく
(θ₁、θ₂は鋭角である:Q)
z=cos(θ₁+θ₂)
θ₁=A/2、θ₂=B/2とおくと
z=cos(A+B)/2
A+B+C=π (ABCはある三角形の内角)とおくとz=sinC/2>0
となり必要条件Q、Pを満たす。
よって逆も成り立つ。

2022/12/07(水)00:30:31.26(???.net)


284ご冗談でしょう?名無しさん [sage]

AAS

NG

>>259>>261
複素変数の三角関数の値を三角比と呼ぶべきではない理由が意味不明

2022/12/19(月)05:12:31.46(???.net)


285ご冗談でしょう?名無しさん

AAS

NG

2022/12/23(金)02:53:52.27(SrLn4DaA.net)


286ご冗談でしょう?名無しさん [sage]

AAS

NG

>>284
三角形の辺の比と直接対応づけされてないからにきまってるだろ。
馬鹿なの?

2022/12/25(日)09:45:14.76(???.net)


287ご冗談でしょう?名無しさん [sage]

AAS

NG

直接対応付けられてますが>>260何か?
三角形の辺の比と直接関係もなく複素関数の三角関数が定義されているとでも?

2022/12/26(月)09:36:51.73(???.net)

名前

メール

本文